1. Strona główna
  2. Aktualności

Aktualności

Nasza praca w Chemical Science!

Opracowaliśmy nową strategię projektowania syntetycznych transporterów aminokwasów, czyli niewielkich cząsteczek organicznych zdolnych do efektywnego przenoszenia aminokwasów przez dwuwarstwy lipidowe. Takie związki mogą wykazywać szerokie spektrum aktywności biologicznych a także znaleźć zastosowania w transporcie leków, regulacji metabolizmu czy też jako antybiotyki nowej generacji.

Transport aminokwasów przez błony biologiczne jest procesem kluczowym dla funkcjonowania każdej żywej komórki. Wynika to z faktu, że w pH fizjologicznym aminokwasy są bardzo polarne (mają dodatnio naładowany N-koniec i ujemnie naładowany C-koniec) i z tego powodu nie są w stanie samodzielnie przeniknąć przez dwuwarstwy lipidowe. W naturze transportem aminokwasów zajmują się wyspecjalizowane białka membranowe, które odgrywają ważną rolę w regulacji kluczowych funkcji fizjologicznych, takich jak biosynteza białek, metabolizm, ekspresja genów, równowaga redoks i przekazywanie sygnałów. Dysfunkcja tych białek przyczynia się do rozwoju poważnych chorób, takich jak cukrzyca, choroby neurodegeneracyjne, otyłość i nowotwory. Syntetyczne transportery aminokwasów mogłyby pomóc w leczeniu tych chorób, a także posłużyć jako nośniki leków, regulatory metabolizmu a nawet jako antybiotyki nowej generacji.

Niestety, właśnie ze względu na obojnaczy charakter aminokwasów, będących jednocześnie kationami i anionami, opracowanie takich syntetycznych transporterów było dotychczas zadaniem niezwykle trudnym, wymagało bowiem połączenia w jednej strukturze miejsc wiążących kationy i aniony. W niniejszej pracy pokazujemy jednak, że takie podejście nie jest jedynym możliwym i że nawet bardzo proste transportery anionów są w stanie efektywnie przenosić aminokwasy przez dwuwarstwy lipidowe w pH fizjologicznym. Aby wyjaśnić tę nadspodziewaną skuteczność prostych anionoforów, opracowaliśmy nową metodę badania transportu aminokwasów, która dała nam wgląd w mechanizm tego zjawiska. Dzięki temu byliśmy w stanie zaproponować nową strategię poszukiwania syntetycznych transporterów aminokwasów o ulepszonych właściwościach i interesującej aktywności biologicznej. Czytaj dalej tutaj.

 

 

Rezultaty naszej współpracy z biologami z UW i chemikami z Brukseli ukazały się właśnie w OBC

Nasze badania ujawniły współzawodnictwo dwóch różnych mechanizmów transportu HCO3‾ przez proste di(tio)amidokarbazole, a także silne działanie antybakteryjne tych związków. Przeczytaj więcej tutaj.

Grant „Nowe Idee” dla Laboratorium Chemii Supramolekularnej

Aniony są przeważnie zbyt hydrofilowe, żeby mogły swobodnie przenikać przez błony biologiczne. Dotyczy to również tych leków, które w pH fizjologicznym występują w postaci anionowej. Syntetyczne transportery anionów, czyli niewielkie, lipofilowe cząsteczki organiczne ułatwiające przenikanie anionów przez bariery lipofilowe, potrafią przyspieszać dyfuzję anionów przez dwuwarstwy lipidowe o wiele rzędów wielkości i dzięki temu mogłyby radykalnie zwiększyć skuteczność działania leków o charakterze anionowym. Co więcej, transportery, których aktywnością można sterować przy użyciu światła, pH lub innych bodźców, mogłyby umożliwić celowane dostarczanie leków w odpowiednie miejsce i w odpowiednim czasie. Celem niniejszego projektu jest opracowanie pierwszych przełączalnych transporterów molekularnych dla leków anionowych i zademonstrowanie w ten sposób nowego sposobu sterowania dostarczaniem leków. W jego ramach podejmiemy badania nad konstrukcją transporterów przełączalnych przy pomocy zmian pH albo naświetlania światłem o określonej długości fali. Mamy nadzieję, że badania te zaowocują powstaniem nowej strategii inteligentnego dostarczania leków, która może w przyszłości znaleźć praktyczne zastosowanie np. w leczeniu nowotworów.

Serdecznie witamy w naszym zespole pana dr. Debashisa Mondala!

Debashis ukończył chemię na IIT Bombay (Indie) w 2015, a następnie doktorat z chemii supramolekularnej anionów w IISER Pune (Indie) pod kierunkiem prof. Pinaki’ego Talukdara (2022). We wrześniu 2022 dołączył do Laboratorium Chemii Supramolekularnej jako badacz wizytujący (post-doc) w celu realizacji grantu NCN OPUS pt. „Selektywny transport anionów o znaczeniu biologicznym przez dwuwarstwy lipidowe”.

Twitter: https://twitter.com/DebashisJMChem

Serdecznie witamy!

 

Oferta pracy dla postdoków w projekcie OPUS

Poszukujemy postdoków do pracy przy realizacji projektu badawczego z pogranicza chemii organicznej, medycznej i supramolekularnej.

Celem projektu jest poszukiwanie cząsteczek zdolnych do selektywnego transportu anionów o znaczeniu biologicznym przez dwuwarstwy lipidowe. Cząsteczki takie mogą wykazywać właściwości antynowotworowe, antybakteryjne i antywirusowe, a także znaleźć zastosowanie w leczeniu chorób wynikających z dysfunkcji naturalnych transporterów w organizmie. W ramach projektu chcielibyśmy też skonstruować transportery przełączalne przy pomocy bodźców zewnętrznych, takich jak pH, światło czy potencjał redoks.

Osoby zatrudnione w grancie będą się zajmować projektowaniem, syntezą i badaniem właściwości kompleksotwórczych nowych receptorów molekularnych na aniony, a także badaniem ich zdolności do transportowania anionów przez dwuwarstwy lipidowe modelowych liposomów.

Oferujemy:

  • umowę o pracę na pełen etat na 12 miesięcy z możliwością przedłużenia. Spodziewana data rozpoczęcia pracy: sierpień 2022 (do uzgodnienia)
  • pracę w nowoczesnych i znakomicie wyposażonych laboratoriach umiejscowionych w nowym budynku Centrum Nauk Biologiczno-Chemicznych
  • pracę w 6 osobowym zespole projektowym złożonym z kierownika projektu (MCh), 2 postdoków, 2 doktorantów i 1 magistranta
  • atrakcyjne zarobki (10 000 zł brutto-brutto miesięcznie)

Termin nadsyłania zgłoszeń: 16 lipca 2022. Szczegóły procedury rekrutacyjnej w Ogłoszeniu.

Stworzyliśmy transporter chlorków, którego aktywność można regulować przy pomocy pH

Transportery chlorków są intensywnie badane ze względu na ich potencjalne zastosowania medyczne. W szczególności transportery, których aktywność można regulować przy pomocy pH, są bardzo atrakcyjne jako potencjalne środki antynowotworowe, ponieważ mogą być bardziej aktywne w komórkach rakowych niż w zdrowych. Dzięki swojej wyjątkowo wysokiej kwasowości nasz najnowszy, 3,6-dinitropodstawiony receptor karbazolowy działa jako taki właśnie transporter przełączalny, o pozornym pKa = 6,4, a więc bliskim fizjologicznego. Więcej w naszej najnowszej publikacji w specjalnym numerze Frontiers in Chemistry, poświęconym transportowi anionów:

Maslowska-Jarzyna, M. L. Korczak, M. J. Chmielewski, “Boosting Anion Transport Activity of Diamidocarbazoles by Electron Withdrawing Substituents” Front. Chem., 2021, 9:690035.

Stypendia NCN dla studentów w projekcie OPUS (chemia organiczna/materiałowa)

Poszukujemy studentów do współpracy przy realizacji przełomowego projektu badawczego z pogranicza chemii organicznej i materiałowej. Atrakcyjne stypendia czekają!

Celem projektu jest stworzenie zupełnie nowej klasy ‘inteligentnych’ materiałów porowatych, łączących trwałość MOF-ów ze zdolnością do odpowiedzi na bodźce i adaptacji do środowiska zewnętrznego. W ramach projektu zamierzamy też opracować nową strategię konstruowania MOF-ów przewodzących prąd elektryczny do zastosowań w bateriach i superkondensatorach.

Oferujemy:

  • możliwość udziału w potencjalnie przełomowych badaniach prowadzonych we współpracy z wiodącymi ośrodkami naukowymi
  • pracę w nowoczesnych i znakomicie wyposażonych laboratoriach zlokalizowanych w nowym budynku Centrum Nauk Biologiczno-Chemicznych UW
  • szansę na publikacje w prestiżowych czasopismach
  • możliwość przygotowania pracy dyplomowej związanej z tematyką grantu
  • pracę w zespole projektowym złożonym z kierownika projektu (MCh), 1 post-doca z wieloletnim doświadczeniem w tematyce grantu, 2 doktorantów i studentów
  • stypendia NCN w wysokości 1500 zł netto/mc na 10 miesięcy

Termin nadsyłania zgłoszeń – 10.12.2021. Więcej szczegółów tu: Ogłoszenie.

Pierwsza wspólna praca z prof. Mircea Dincă z MIT właśnie ukazała się w Angewandte Chemie

MOF-y przewodzące prąd elektryczny to fascynująca klasa materiałów porowatych o licznych potencjalnych zastosowaniach, takich jak przechowywanie energii, elektrokataliza czy konstrukcja sensorów. Dzięki stypendium Bekkera z NAWA dr hab. Michał Chmielewski nawiązał współpracę z jednym z pionierów i liderów rozwoju tych materiałów, prof. Mircea Dincă z Massachusetts Institute of Technology. Pierwszym owocem tej współpracy jest wspólna publikacja w prestiżowym Angewandte Chemie International Edition, w której pokazujemy nowy typ bloków budulcowych do konstrukcji MOF-ów przewodzących:

Jak badać transport ważnych biologicznie anionów przez dwuwarstwy lipidowe?

Leki, metabolity i inne ważne biologicznie aniony mogą być z łatwością transportowane przez membrany biologiczne za pomocą prostego receptora di(tioamidowego) opracowanego w naszym laboratorium. We współpracy z grupą profesora Alexandra Krosa z Uniwersytetu w Lejdzie pokazaliśmy, że kinetykę transportu wielu ważnych anionów można łatwo mierzyć zarówno w dużych jak i w gigantycznych liposomach jednowarstwowych (tzw. LUV-ach i w GUV-ach).

Graphical abstract: Oxyanion transport across lipid bilayers: direct measurements in large and giant unilamellar vesicles