Opracowaliśmy nową strategię projektowania syntetycznych transporterów aminokwasów, czyli niewielkich cząsteczek organicznych zdolnych do efektywnego przenoszenia aminokwasów przez dwuwarstwy lipidowe. Takie związki mogą wykazywać szerokie spektrum aktywności biologicznych a także znaleźć zastosowania w transporcie leków, regulacji metabolizmu czy też jako antybiotyki nowej generacji.
Transport aminokwasów przez błony biologiczne jest procesem kluczowym dla funkcjonowania każdej żywej komórki. Wynika to z faktu, że w pH fizjologicznym aminokwasy są bardzo polarne (mają dodatnio naładowany N-koniec i ujemnie naładowany C-koniec) i z tego powodu nie są w stanie samodzielnie przeniknąć przez dwuwarstwy lipidowe. W naturze transportem aminokwasów zajmują się wyspecjalizowane białka membranowe, które odgrywają ważną rolę w regulacji kluczowych funkcji fizjologicznych, takich jak biosynteza białek, metabolizm, ekspresja genów, równowaga redoks i przekazywanie sygnałów. Dysfunkcja tych białek przyczynia się do rozwoju poważnych chorób, takich jak cukrzyca, choroby neurodegeneracyjne, otyłość i nowotwory. Syntetyczne transportery aminokwasów mogłyby pomóc w leczeniu tych chorób, a także posłużyć jako nośniki leków, regulatory metabolizmu a nawet jako antybiotyki nowej generacji.
Niestety, właśnie ze względu na obojnaczy charakter aminokwasów, będących jednocześnie kationami i anionami, opracowanie takich syntetycznych transporterów było dotychczas zadaniem niezwykle trudnym, wymagało bowiem połączenia w jednej strukturze miejsc wiążących kationy i aniony. W niniejszej pracy pokazujemy jednak, że takie podejście nie jest jedynym możliwym i że nawet bardzo proste transportery anionów są w stanie efektywnie przenosić aminokwasy przez dwuwarstwy lipidowe w pH fizjologicznym. Aby wyjaśnić tę nadspodziewaną skuteczność prostych anionoforów, opracowaliśmy nową metodę badania transportu aminokwasów, która dała nam wgląd w mechanizm tego zjawiska. Dzięki temu byliśmy w stanie zaproponować nową strategię poszukiwania syntetycznych transporterów aminokwasów o ulepszonych właściwościach i interesującej aktywności biologicznej. Czytaj dalej tutaj.
Nasze badania ujawniły współzawodnictwo dwóch różnych mechanizmów transportu HCO3‾ przez proste di(tio)amidokarbazole, a także silne działanie antybakteryjne tych związków. Przeczytaj więcej tutaj.
Aniony są przeważnie zbyt hydrofilowe, żeby mogły swobodnie przenikać przez błony biologiczne. Dotyczy to również tych leków, które w pH fizjologicznym występują w postaci anionowej. Syntetyczne transportery anionów, czyli niewielkie, lipofilowe cząsteczki organiczne ułatwiające przenikanie anionów przez bariery lipofilowe, potrafią przyspieszać dyfuzję anionów przez dwuwarstwy lipidowe o wiele rzędów wielkości i dzięki temu mogłyby radykalnie zwiększyć skuteczność działania leków o charakterze anionowym. Co więcej, transportery, których aktywnością można sterować przy użyciu światła, pH lub innych bodźców, mogłyby umożliwić celowane dostarczanie leków w odpowiednie miejsce i w odpowiednim czasie. Celem niniejszego projektu jest opracowanie pierwszych przełączalnych transporterów molekularnych dla leków anionowych i zademonstrowanie w ten sposób nowego sposobu sterowania dostarczaniem leków. W jego ramach podejmiemy badania nad konstrukcją transporterów przełączalnych przy pomocy zmian pH albo naświetlania światłem o określonej długości fali. Mamy nadzieję, że badania te zaowocują powstaniem nowej strategii inteligentnego dostarczania leków, która może w przyszłości znaleźć praktyczne zastosowanie np. w leczeniu nowotworów.
Debashis ukończył chemię na IIT Bombay (Indie) w 2015, a następnie doktorat z chemii supramolekularnej anionów w IISER Pune (Indie) pod kierunkiem prof. Pinaki’ego Talukdara (2022). We wrześniu 2022 dołączył do Laboratorium Chemii Supramolekularnej jako badacz wizytujący (post-doc) w celu realizacji grantu NCN OPUS pt. „Selektywny transport anionów o znaczeniu biologicznym przez dwuwarstwy lipidowe”.
Twitter: https://twitter.com/DebashisJMChem
Serdecznie witamy!
Poszukujemy postdoków do pracy przy realizacji projektu badawczego z pogranicza chemii organicznej, medycznej i supramolekularnej.
Celem projektu jest poszukiwanie cząsteczek zdolnych do selektywnego transportu anionów o znaczeniu biologicznym przez dwuwarstwy lipidowe. Cząsteczki takie mogą wykazywać właściwości antynowotworowe, antybakteryjne i antywirusowe, a także znaleźć zastosowanie w leczeniu chorób wynikających z dysfunkcji naturalnych transporterów w organizmie. W ramach projektu chcielibyśmy też skonstruować transportery przełączalne przy pomocy bodźców zewnętrznych, takich jak pH, światło czy potencjał redoks.
Osoby zatrudnione w grancie będą się zajmować projektowaniem, syntezą i badaniem właściwości kompleksotwórczych nowych receptorów molekularnych na aniony, a także badaniem ich zdolności do transportowania anionów przez dwuwarstwy lipidowe modelowych liposomów.
Oferujemy:
Termin nadsyłania zgłoszeń: 16 lipca 2022. Szczegóły procedury rekrutacyjnej w Ogłoszeniu.
Transportery chlorków są intensywnie badane ze względu na ich potencjalne zastosowania medyczne. W szczególności transportery, których aktywność można regulować przy pomocy pH, są bardzo atrakcyjne jako potencjalne środki antynowotworowe, ponieważ mogą być bardziej aktywne w komórkach rakowych niż w zdrowych. Dzięki swojej wyjątkowo wysokiej kwasowości nasz najnowszy, 3,6-dinitropodstawiony receptor karbazolowy działa jako taki właśnie transporter przełączalny, o pozornym pKa = 6,4, a więc bliskim fizjologicznego. Więcej w naszej najnowszej publikacji w specjalnym numerze Frontiers in Chemistry, poświęconym transportowi anionów:
Poszukujemy studentów do współpracy przy realizacji przełomowego projektu badawczego z pogranicza chemii organicznej i materiałowej. Atrakcyjne stypendia czekają!
Celem projektu jest stworzenie zupełnie nowej klasy ‘inteligentnych’ materiałów porowatych, łączących trwałość MOF-ów ze zdolnością do odpowiedzi na bodźce i adaptacji do środowiska zewnętrznego. W ramach projektu zamierzamy też opracować nową strategię konstruowania MOF-ów przewodzących prąd elektryczny do zastosowań w bateriach i superkondensatorach.
Oferujemy:
Termin nadsyłania zgłoszeń – 10.12.2021. Więcej szczegółów tu: Ogłoszenie.
MOF-y przewodzące prąd elektryczny to fascynująca klasa materiałów porowatych o licznych potencjalnych zastosowaniach, takich jak przechowywanie energii, elektrokataliza czy konstrukcja sensorów. Dzięki stypendium Bekkera z NAWA dr hab. Michał Chmielewski nawiązał współpracę z jednym z pionierów i liderów rozwoju tych materiałów, prof. Mircea Dincă z Massachusetts Institute of Technology. Pierwszym owocem tej współpracy jest wspólna publikacja w prestiżowym Angewandte Chemie International Edition, w której pokazujemy nowy typ bloków budulcowych do konstrukcji MOF-ów przewodzących:
Leki, metabolity i inne ważne biologicznie aniony mogą być z łatwością transportowane przez membrany biologiczne za pomocą prostego receptora di(tioamidowego) opracowanego w naszym laboratorium. We współpracy z grupą profesora Alexandra Krosa z Uniwersytetu w Lejdzie pokazaliśmy, że kinetykę transportu wielu ważnych anionów można łatwo mierzyć zarówno w dużych jak i w gigantycznych liposomach jednowarstwowych (tzw. LUV-ach i w GUV-ach).